翻訳と辞書 |
Lamé's special quartic : ウィキペディア英語版 | Lamé's special quartic
Lamé's special quartic is the graph of the equation : where .〔.〕 It looks like a rounded square with "sides" of length and centered on the origin. This curve is a squircle centered on the origin, and it is a special case of a super ellipse.〔.〕 Because of Pierre de Fermat's only surviving proof, that of the ''n'' = 4 case of Fermat's Last Theorem, if ''r'' is rational there is no non-trivial rational point (''x'', ''y'') on this curve (that is, no point for which both ''x'' and ''y'' are non-zero). ==References==
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Lamé's special quartic」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|